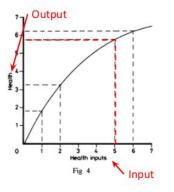
The Demand for Health

University of Alabama

September 1, 2016

Last Class

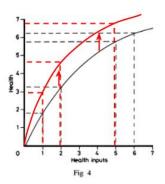
- We learned about how we might be able to model the production of health through use of the standard Neoclassical Production Function.
- We discussed "Flat-of-the-Curve" Medicine and two studies that argue that we are not at the flat-of-the-curve in the U.S.
- Now we will move in the direction of understanding a individual agent's demand for health.


How to Model Demand for Health

The model has four parts:

- 1. Utility: Happiness derived from consumption of health and consumption of "home goods."
- 2. Budget Constraint: The consumer can only afford so much. Additionally, the consumer must exhaust all of her income.
- Time Constraint: The consumer is constraint by time, in that she has a limited amount to devote to labor, leisure, and investment.
- 4. Production Function: The consumer turns health inputs into health outputs.

Recall the Health Production Function


 People use inputs to produce health

- Inputs could be exercise, medical care
- Inputs go into a health "factory" to produce health.
- Production Function shows how much output comes from each input, "All Else Equal"

Technological Progress

If technology increases...

- Each health input leads to MORE health output
- Ex:
 - Before, 5 units of health input led to just under 6 units of health output
 - Now, 5 units of health input lead to almost 7 units of health output

Utility

- Consumers gain utility, or happiness from the consumption of goods or services.
- Indifference curves show how much of one good a consumer is willing to give up in order to gain an additional unit of another good.
- ► Recall that the Marginal Rate of Substitution, or the MRS, is a mathematical tool that captures this tradeoff.
- The MRS is the negative slope of the indifference curve

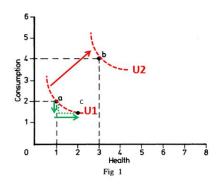
Assumptions of Indifference Curves

1. Completeness and Rankability

Consumers can compare bundles of goods and rank them

2. Local-Nonsatiation

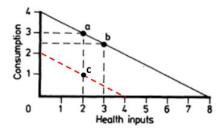
More is better than less


3. Transitivity

Imposes a logical consistency on rankings

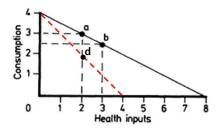
4. Convexity

Averages are preferred to extremes

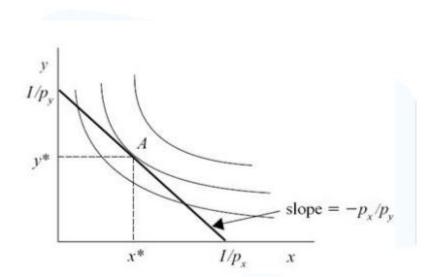

Health Indifference Curves

- Indifference curves are convex
- Indifference curves that are "far out" are better
- As health increases and consumption decreases, value increased health less than increased consumption

Budget Constraint

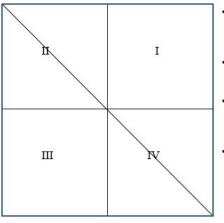

Shows combinations of goods consumer can afford

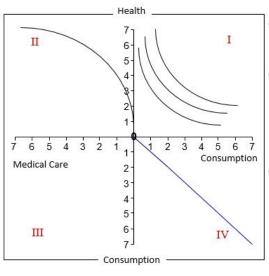
- For example, consumer has \$200
 - Health inputs cost \$25 each and consumption bundles cost \$50 each
 - Point (a): 2*\$25 + 3*\$50 = \$200
- What if only \$100?
 - Point (c): 2*\$25 + 1*\$50=\$100


Budget Constraint

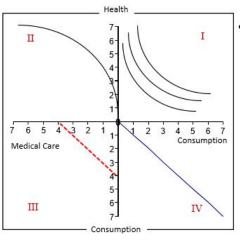
Shows combinations of goods consumer can afford

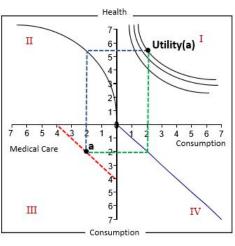
- For example, consumer has \$200
 - Health inputs cost \$25 each and consumption bundles cost \$50 each
- What if health inputs increase to \$50?
 - Budget line swings
 - Point (d): 2*\$25 + 1*\$50=\$100

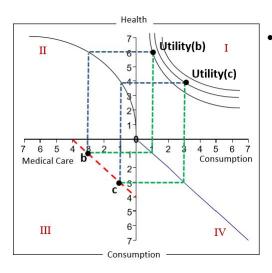

The Optimal Bundle

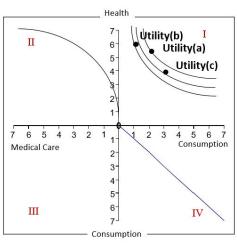

Putting Everything Together

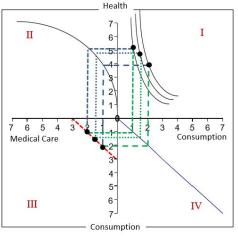
- Wagstaff (1986): The Four Quadrant Model
- We can graphically depict the consumer's optimal choice of health consumption and consumption of other enjoyments of life, call them home goods.
- Understand that this is a graphical depiction of a constrained optimization problem with which you are all familiar: The Consumer's Utility Maximization Problem.
- ➤ The consumer seeks to maximize utility subject to some budget constraint and some health production process.


Putting Everything Together


- Quadrant I: Indifference map. Shows the combinations of health and other goods providing same level of utility.
- Quadrant II: Production function for health. Relates inputs (medical care) to output (good health).
- Quadrant III: Budget Constraint. Shows how much of each good the consumer can purchase with available income.
- Quadrant IV: 45 degree line.
 Enables one to read consumption off the vertical axis in quadrant III with the horizontal axis in quadrant I.


- Assume a consumer has \$200 per month in income.
- This income is spent on medical care (MC) and the consumption of a composite good (C). Both goods cost \$50 per unit.
- What will the consumer choose?


- Start with budget constraint (III)
 - Can buy 4 units of MC and 0 units of C
 - Or 0 units of MC and 4 units of C
 - ... or 2 and 2


- Now pick an affordable bundle
- Ex: (2,2)
- Use Q II and Q IV to relate bundle to Utility in Q I
- Trace to Q IV then up to I for C
- Trace to Q II then over to I for MC and Health

Now find Utility(b) and Utility (c)

- What can we say about what the consumer will do?
- Utility(a) > Utility(c) > Utility(b)
 - Consumer buys 2 units MC and 2 units Consumption

- What if income decreases to \$150?
- Show effects for buying 2, 1.5, and 1 units of consumption

Next Class

- We will more formally introduce the Model of Health Demand
- Grossman (1972)